Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 11078, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773325

RESUMO

Immune cell chemotaxis to the sites of pathogen invasion is critical for fighting infection, but in life-threatening conditions such as sepsis and Covid-19, excess activation of the innate immune system is thought to cause a damaging invasion of immune cells into tissues and a consequent excessive release of cytokines, chemokines and neutrophil extracellular traps (NETs). In these circumstances, tempering excessive activation of the innate immune system may, paradoxically, promote recovery. Here we identify the antimalarial compound artemisinin as a potent and selective inhibitor of neutrophil and macrophage chemotaxis induced by a range of chemotactic agents. Artemisinin released calcium from intracellular stores in a similar way to thapsigargin, a known inhibitor of the Sarco/Endoplasmic Reticulum Calcium ATPase pump (SERCA), but unlike thapsigargin, artemisinin blocks only the SERCA3 isoform. Inhibition of SERCA3 by artemisinin was irreversible and was inhibited by iron chelation, suggesting iron-catalysed alkylation of a specific cysteine residue in SERCA3 as the mechanism by which artemisinin inhibits neutrophil motility. In murine infection models, artemisinin potently suppressed neutrophil invasion into both peritoneum and lung in vivo and inhibited the release of cytokines/chemokines and NETs. This work suggests that artemisinin may have value as a therapy in conditions such as sepsis and Covid-19 in which over-activation of the innate immune system causes tissue injury that can lead to death.


Assuntos
Artemisininas , Tratamento Farmacológico da COVID-19 , Armadilhas Extracelulares , Macrófagos , Neutrófilos , Sepse , Animais , Artemisininas/farmacologia , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Quimiotaxia/efeitos dos fármacos , Citocinas/biossíntese , Citocinas/metabolismo , Armadilhas Extracelulares/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Tapsigargina/farmacologia
2.
Sci Rep ; 10(1): 8869, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483228

RESUMO

Antibody-Drug Conjugates (ADCs) developed as a targeted treatment approach to deliver toxins directly to cancer cells are one of the fastest growing classes of oncology therapeutics, with eight ADCs and two immunotoxins approved for clinical use. However, selection of an optimum target and payload combination, to achieve maximal therapeutic efficacy without excessive toxicity, presents a significant challenge. We have developed a platform to facilitate rapid and cost-effective screening of antibody and toxin combinations for activity and safety, based on streptavidin-biotin conjugation. For antibody selection, we evaluated internalization by target cells using streptavidin-linked antibodies conjugated to biotinylated saporin, a toxin unable to cross cell membranes. For payload selection, we biotinylated toxins and conjugated them to antibodies linked to streptavidin to evaluate antitumour activity and pre-clinical safety. As proof of principle, we compared trastuzumab conjugated to emtansine via streptavidin-biotin (Trastuzumab-SB-DM1) to the clinically approved trastuzumab emtansine (T-DM1). We showed comparable potency in reduction of breast cancer cell survival in vitro and in growth restriction of orthotopic breast cancer xenografts in vivo. Our findings indicate efficient generation of functionally active ADCs. This approach can facilitate the study of antibody and payload combinations for selection of promising candidates for future ADC development.


Assuntos
Antineoplásicos/química , Imunoconjugados/química , Toxinas Biológicas/química , Trastuzumab/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biotina/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Maitansina/química , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Saporinas/química , Estreptavidina/química , Transplante Heterólogo , Trastuzumab/uso terapêutico
3.
Front Microbiol ; 9: 1996, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30190717

RESUMO

The human commensal yeast Candida is the fourth most common cause of hospital-acquired bloodstream infections, with Candida albicans accounting for the majority of the >400,000 life-threatening infections annually. Diagnosis of invasive candidiasis (IC), a disease encompassing candidemia (blood-borne yeast infection) and deep-seated organ infections, is a major challenge since clinical manifestations of the disease are indistinguishable from viral, bacterial and other fungal diseases, and diagnostic tests for biomarkers in the bloodstream such as PCR, ELISA, and pan-fungal ß-D-glucan lack either standardization, sensitivity, or specificity. Blood culture remains the gold standard for diagnosis, but test sensitivity is poor and turn-around time slow. Furthermore, cultures can only be obtained when the yeast resides in the bloodstream, with samples recovered from hematogenous infections often yielding negative results. Consequently, there is a pressing need for a diagnostic test that allows the identification of metastatic foci in deep-seated Candida infections, without the need for invasive biopsy. Here, we report the development of a highly specific mouse IgG3 monoclonal antibody (MC3) that binds to a putative ß-1,2-mannan epitope present in high molecular weight mannoproteins and phospholipomannans on the surface of yeast and hyphal morphotypes of C. albicans, and its use as a [64Cu]NODAGA-labeled tracer for whole-body pre-clinical imaging of deep-seated C. albicans infections using antibody-guided positron emission tomography and magnetic resonance imaging (immunoPET/MRI). When used in a mouse intravenous (i.v.) challenge model that faithfully mimics disseminated C. albicans infections in humans, the [64Cu]NODAGA-MC3 tracer accurately detects infections of the kidney, the principal site of blood-borne candidiasis in this model. Using a strain of the emerging human pathogen Candida auris that reacts with MC3 in vitro, but which is non-infective in i.v. challenged mice, we demonstrate the accuracy of the tracer in diagnosing invasive infections in vivo. This pre-clinical study demonstrates the principle of using antibody-guided molecular imaging for detection of deep organ infections in IC, without the need for invasive tissue biopsy.

4.
J Immunol Methods ; 427: 13-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26391915

RESUMO

An in vitro zymosan-activation of the Complement system, through the lectin and alternative pathways, was performed in pooled human serum over a 24h time-course. Activation was quantitatively monitored by measuring the concentration of the upper Complement pathway fragment, C3a and the terminal pathway fragment, C5a. Upper Complement showed a maximum activation of 39% and the time-to-maximum activation reduced 8-fold, as a highly non-linear function of the zymosan dose. The C3a:C5a molar ratio rose to a maximum of 1100:1, before terminal pathway activation was initiated; indicating a flux threshold. This threshold appears to be exceeded once more than 31% of C3 molecules are activated. Above this threshold, significant activation of terminal pathway was observed; reducing the molar ratio to 17:1. The C5a/C3a molar ratio was used to determine the terminal pathway activation relative to total Complement activation and ranged from 0.1-0.8%. This depicts upper Complement activation to be 49-fold larger than terminal activation, a figure consistent with the observed density of the membrane attack complex in the membrane of cells. Our results thus indicate that the relative activity of opsonisation is ~50-fold greater than membrane attack complex formation, in vitro, in the pooled serum phenotype. The results suggest a potential clinical application, where an in vitro analysis of a patient on admission, or prior to a surgical procedure, would indicate their upper Complement activation capacity, with activation of C3 measured thereafter, or post-operatively. A patient with an exhausted upper Complement capacity may be vulnerable to infections and complications, such as sepsis.


Assuntos
Ativação do Complemento/fisiologia , Complemento C3a/metabolismo , Complemento C5a/metabolismo , Lectina de Ligação a Manose da Via do Complemento/fisiologia , Humanos , Radioimunoensaio , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA